If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x=2
We move all terms to the left:
2x^2+5x-(2)=0
a = 2; b = 5; c = -2;
Δ = b2-4ac
Δ = 52-4·2·(-2)
Δ = 41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{41}}{2*2}=\frac{-5-\sqrt{41}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{41}}{2*2}=\frac{-5+\sqrt{41}}{4} $
| -2x+3+7=25 | | (x+1)(x+2)-(x+1)(3x-4)=0 | | 3y+15=5y-15 | | X-33=5(2x+3)+12 | | -33=5(2x+3)+12 | | 6x+9x+17=15x+9+8 | | 5×x+3=100 | | 3x+6/4=2×-1 | | -9(x+3)+34=12-10x | | x+20-x+40=0 | | 5-3(2x-3)=x-7 | | (x+20)(x+40)=0 | | -7-7p=3p=23 | | x^2–5x=12 | | a/3=42 | | 4(-2)=x+10 | | 2x+3=12+× | | (7s+5s)(2s-6)=0 | | 2x+3=11+× | | 2(x-2)+3(x-2)=6(x-1) | | 89+t=103 | | 4t=104 | | (x+18)=(5x-42) | | (1/4a+3/4)1/2=1 | | (−8x−12)+(9x+4=) | | 3p+10+-7+50=2(p+21) | | x2-3.5x+3=0 | | 3+10/x=x+6 | | 8x-35=101 | | 6x-91=4x-31 | | 9x^2-7x^2+6x-2-9=0 | | -7p+76=2p+18+p+49 |